The subalgebra lattice of a Heyting algebra

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lattice of Substitutions is a Heyting Algebra

(6) For every finite element a of V→̇C holds {a} ∈ SubstitutionSet(V,C). (7) If A a B = A, then for every set a such that a ∈ A there exists a set b such that b ∈ B and b⊆ a. (8) If μ(A a B) = A, then for every set a such that a ∈ A there exists a set b such that b ∈ B and b⊆ a. (9) If for every set a such that a ∈ A there exists a set b such that b ∈ B and b ⊆ a, then μ(A a B) = A. Let V be a s...

متن کامل

The Cohomology Algebra of a Subalgebra of the Steenrod Algebra

We compute the cohomology algebra of P (1), the subalgebra of the Steenrod algebra generated by P 1 and P p. This completes a partial result given by Arunas Liulevicius in 1962 and provides explicit representatives in the cobar construction for all but one of the algebra generators.

متن کامل

Subalgebra Lattices of a Partial Unary Algebra

Necessary and sufficient conditions will be found for quadruples of lattices to be isomorphic to lattices of weak, relative, strong subalgebras and initial segments, respectively, of one partial unary algebra. To this purpose we will start with a characterization of pairs of lattices that are weak and strong subalgebra lattices of one partial unary algebra, respectively. Next, we will describe ...

متن کامل

On Some Influence of the Weak Subalgebra Lattice on the Subalgebra Lattice

In [14] we showed that for each locally finite unary (total) algebra of finite type, its weak subalgebra lattice uniquely determines its (strong) subalgebra lattice. Now we generalize this fact to algebras having also finitely many binary operations (for example, groupoids, semigroups, semilattices). More precisely, we generalize some ideas from [14] to prove: Let A be a locally finite (total) ...

متن کامل

The Fixed Point Subalgebra of a Lattice Vertex Operator Algebra by an Automorphism of Order Three

We study the subalgebra of the lattice vertex operator algebra V√ 2A2 consisting of the fixed points of an automorphism which is induced from an order 3 isometry of the root lattice A2. We classify the simple modules for the subalgebra. The rationality and the C2-cofiniteness are also established.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Czechoslovak Mathematical Journal

سال: 1987

ISSN: 0011-4642,1572-9141

DOI: 10.21136/cmj.1987.102132